D(3)=4.9t^2

Simple and best practice solution for D(3)=4.9t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for D(3)=4.9t^2 equation:



(3)=4.9D^2
We move all terms to the left:
(3)-(4.9D^2)=0
We get rid of parentheses
-4.9D^2+3=0
a = -4.9; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-4.9)·3
Δ = 58.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$D_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$D_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$D_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{58.8}}{2*-4.9}=\frac{0-\sqrt{58.8}}{-9.8} =-\frac{\sqrt{}}{-9.8} $
$D_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{58.8}}{2*-4.9}=\frac{0+\sqrt{58.8}}{-9.8} =\frac{\sqrt{}}{-9.8} $

See similar equations:

| 96t-16t^2=-96 | | -1=M(-3)+b | | x.2(-3x+5)=52 | | 1.025^(x)=2 | | 19x-4=120 | | x/3+5.3=-4.3 | | -2(4x+3)–1=x+5 | | 2(3t+4t)+4(5t-t)=0 | | 16.2=-9.4+8v | | 13=u/7.68+7 | | 4(3x+7)-6(4x-5)=10x+3(2x-8) | | 6x*2=8x-4 | | 11=2(-4x)+4 | | (8-u)(4u-7)=0 | | 2x+23+9x-5=180 | | 7x-70+2x+5=180 | | 4(x+4)-3(7x-6)=13 | | 8–2x=20–5x | | N+n+4=3(6) | | 1/2k+(k+1/4)=1/8(k+4) | | 9x+11+7x-5=180 | | X^2+2x+4x+8=0 | | 12x-7.2=-1.2 | | 8=15-2x | | (336+x)/4=85 | | 40-29-q=0 | | 3p-(-3)=30 | | -b+7=1 | | -3y-13=9y+23 | | 4^2+1^2=x^2 | | 8^2-3=x^2 | | 3x-2=5-2+5 |

Equations solver categories